Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Synthesis of difluorinated carbocyclic analogues of 5-deoxypentofuranoses

Gaëlle Fourrière, Jérôme Lalot, Nathalie Van Hijfte, Jean-Charles Quirion, Eric Leclerc*

Université et INSA de Rouen, CNRS, UMR 6014 C.O.B.R.A.-IRCOF, 1 rue Tesnière, 76821 Mont Saint-Aignan Cedex, France

analogues.

ARTICLE INFO

ABSTRACT

Article history: Received 8 September 2009 Revised 25 September 2009 Accepted 29 September 2009 Available online 7 October 2009

Keywords: Nucleosides Carbasugars Fluorine Radical cyclization

In recent years, carbocyclic nucleosides (I, $X = CH_2$, Scheme 1) of PhS have acquired a growing importance in the field of drug discovery. Their greater metabolic stability indeed imparts to these molecules superior therapeutical properties compared to their natural counterparts possessing a standard sugar backbone (I, X = O, Scheme 1).¹ As powerful antiviral (mainly against HIV, hepatitis B, and herpes viruses) and antitumoral properties are exhibited by several nucleosides (azidothymidine and gemcitabine) and carbonucleo-

thus increased. If the fluorination of various positions on the pentose backbone has been widely studied,² the synthesis of CF₂-carbocyclic nucleosides, in which the intracyclic oxygen atom is replaced by a CF₂ group, is only scarcely described.^{3,4} The stereoelectronic properties of the fluorine atom (strong electronegativity and small size) might nevertheless reasonably impart to these surrogates better mimicking abilities than the apolar CH₂ group.^{2b} Our current interest in the synthesis of CF₂-glycosides prompted us to devise a synthetic plan for the preparation of fluorocarbocyclic analogues **II** (X = CF₂) of various pentoses using a general strategy.⁵

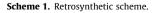
sides (entecavir, abacavir, and aristeromycin), the need for new

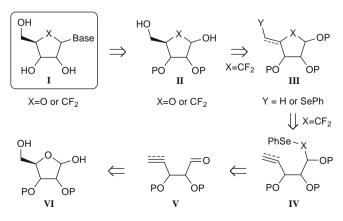
analogues with greater activities and/or lowered side effects has

Our approach, as displayed in Scheme 1, is based on the use of difluorocyclopentane **III** as the key intermediate. Compounds of type **III**, which feature an exocyclic double bond or a phenylselanylmethyl moiety at C-5, might indeed be obtained through a 5*exo* radical cyclization of a difluoromethyl radical onto a double or triple bond, through an atom-transfer or reductive process. The radical precursor **IV** would be readily prepared by addition

* Corresponding author. Tel.: +33 235522901.

E-mail address: eric.leclerc@insa-rouen.fr (E. Leclerc).

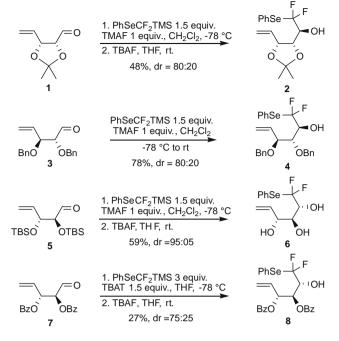

of PhSeCF₂TMS on the pentose-derived aldehyde **V**. Overall, the process would thus provide, in a limited number of steps, the corresponding CF₂ surrogate **II** of the starting carbohydrate **VI**. We wish to present herein our preliminary efforts and results in this area, which allowed the preparation of several CF₂-carbocyclic analogues of 5-deoxypentoses.


The synthesis of difluorinated carbocyclic analogues of 5-deoxypentofuranoses is described. The

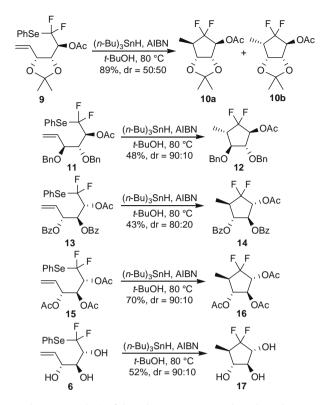
sequence involves an addition of PhSeCF2TMS to carbohydrate-derived aldehydes followed by a radical

cyclization, and provides a secure strategy for a future synthesis of pentofuranoses and nucleoside

Our first study was based on the reductive cyclization of the difluoromethyl radical onto a terminal double bond. Aldehyde **1** was thus prepared according to a literature procedure^{6a} and the addition of PhSeCF₂TMS was examined. The use of easily enolizable α -chiral aldehydes for the fluoride-promoted addition of PhSeCF₂TMS or PhSCF₂TMS is poorly documented.⁷ Among the different methods reported in the literature for the addition to aromatic aldehydes (TBAF as a fluoride source,^{7a} Cu(OAc)₂/dppe as a

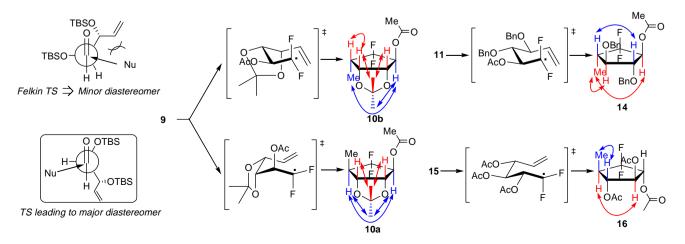


© 2009 Elsevier Ltd. All rights reserved.


^{0040-4039/\$ -} see front matter \circledast 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2009.09.170

Scheme 2. Addition of PhSeCF₂TMS to carbohydrate-derived aldehydes.

Lewis acid activator,^{7d}etc.), the use of TMAF as a promoter led, in our hands, to the best and most reproducible results.^{7c} The requirement of a two-step procedure to convert the OH/OTMS mixture initially obtained to the free alcohol **2** is the only drawback of this method (Scheme 2). The yield and the diastereoselectivity are however satisfactory and similar conditions were also applied to aldehydes **3**, **5**, and **7**.⁶ Worthy of note is the fact that, for benzyl-protected aldehydes such as **3**, a warm-up to room temperature is sufficient to directly afford alcohol **4** in high yield. The TBS-protected arabinose derivative **5** led to the fully deprotected addition product **6** in appreciable yield, thanks to the two-step procedure mentioned earlier. Finally, the benzoyl-protected arabinose derivative **7** required the use of TBAT as the fluoride source to isolate the addition product **8**, unfortunately in low yield (Scheme 2).


Each major diastereomer obtained from these reactions was afterwards acetylated and engaged in a classical tin hydride-mediated radical cyclization (Scheme 3).^{3a,b,8} The cyclized compounds were generally obtained within 2 h in moderate to high yields. The reaction conditions appeared compatible with all protecting

Scheme 3. Synthesis of the 5-deoxypentose CF₂-carbocyclic analogues.

groups including none, as illustrated by the successful cyclization of the unprotected arabinose derivative **8** (Scheme 3).

The relative configurations of the cyclized compounds were easily determined from NOESY NMR experiments, providing informations on the stereochemical outcome of both the PhSeCF₂TMS addition and the radical cyclization (Scheme 4). The latter proceeds according to the classical Beckwith–Houk transition state.⁹ A strong diastereoselectivity was therefore observed in the reaction of the xylose and arabinose derivatives **11** and **15**. On the other hand, an equimolar mixture of the two C-5 epimers **10a** and **10b** was obtained from the ribose derivative **9**. Both transition states leading to these compounds indeed suffer from at least one nonbonding **1**,3-diaxial interaction (Scheme 4). More puzzling is the stereochemical outcome in the addition of PhSeCF₂TMS to aldehydes **1**, **3**, **5**, and **7**, for which anti-Felkin adducts are obtained

Scheme 4. Stereoselectivity of the PhSeCF₂TMS addition and of the radical cyclization.

as the major diastereomers.¹⁰ A chelated transition state can be claimed for Cu(II)-mediated reactions,^{7d} but is of course ruled out for fluoride-promoted additions. Similar results were observed in the addition of fluoroalkylsilane reagents to other carbohydratederived aldehydes by Portella's team.¹¹ The exceptional bulkiness of the postulated hypervalent fluorosilicon intermediate was invoked by the authors to explain this unusual selectivity. In the absence of relevant calculation studies regarding such reactions, a transition state similar to Portella's is therefore proposed in Scheme 4. It accounts for the observed selectivity and allows the minimization of steric interactions despite an unusual *gauche* conformation.

In summary, we have devised a general synthetic route to difluorinated carbocyclic 5-deoxypentofuranose analogues which should be applicable to the preparation of pentofuranose and nucleoside surrogates. The sequence involves an addition of PhSeCF₂TMS to carbohydrate-derived aldehydes featuring a terminal double bond followed by a reductive 5-exo-trig radical cyclization. Several extensions of this work are currently under investigation. A similar sequence using tert-butanesulfinylimines derived from aldehydes V (Scheme 1) could for example allow us to control at will the configuration of the pseudo-anomeric center. The phenylselanyl group transfer radical cyclization of the same substrates and the reductive 5-exo-dig radical cyclization of similar precursors featuring a terminal triple bond are also studied. These last strategies would indeed provide access to pentofuranose and nucleoside analogues. Results in these areas will be reported in due course.

Acknowledgments

We thank the Centre National de la Recherche Scientifique (CNRS) and the Région Haute-Normandie for a PhD grant to G.F. We also thank Dr. Pedro Lameiras, Sophie Guillard, and Pr. Hassan Oulyadi (LRMN, COBRA UMR 6014, Mont Saint-Aignan, France) for the NOESY experiments.

References and notes

 Agrofoglio, L. A.; Challand, S. R., Acyclic, Carbocyclic and L-Nucleosides; Kluwer Academic Publishers: Dordrecht, 1998; (b) Crimmins, M. T. Tetrahedron 1998, 54, 9229–9272; (c) Ferrero, M.; Gotor, V. Chem. Rev. 2000, 100, 4319–4348.

- (a) Meier, C.; Knispel, T.; Marquez, V. E.; Siddiqui, M. A.; De Clercq, E.; Balzarini, J. J. Med. Chem. **1999**, 42, 1615–1624; (b) Kirsch, P. Modern Fluoroorganic Chemistry; Wiley-VCH: Weinheim, Germany, 2004; (c) Wang, J.; Jin, Y.; Rapp, K. L.; Bennett, M.; Schinazi, R. F.; Chu, C. K. J. Med. Chem. **2005**, 48, 3736–3748. and references cited therein.
- For the synthesis of fluorinated carbocyclic analogues of deoxypentofuranoses, see: (a) Barth, F.; O-Yang, C. *Tetrahedron Lett.* **1991**, *32*, 5873–5876; (b) Arnone, A.; Bravo, P.; Cavicchio, G.; Frigerio, M.; Viani, F. *Tetrahedron* **1992**, *48*, 8523– 8540; (c) Yang, Y.-Y.; Meng, W.-D.; Qing, F.-L. Org. Lett. **2004**, 6, 4257–4259.
- 4. For the synthesis of fluorinated carbocyclic analogues of hexopyranoses, see: (a) Jiang, S.; Singh, G.; Batsanov, A. S. *Tetrahedron: Asymmetry* **2000**, *11*, 3873– 3877; (b) Audouard, C.; Fawcett, J.; Griffith, G. A.; Kérourédan, E.; Miah, A.; Percy, J. M.; Yang, H. Org. *Lett.* **2004**, *6*, 4269–4272; (c) Deleuze, A.; Menozzi, C.; Sollogoub, M.; Sinaÿ, P. *Angew. Chem., Int. Ed.* **2004**, *43*, 6680–6683; (d) Sardinha, J.; Guieu, S.; Deleuze, A.; Fernández-Alonso, M. C.; Rauter, A. P.; Sinaÿ, P.; Marrot, J.; Jiménez-Barbero, J.; Sollogoub, M. *Carbohydr. Res.* **2007**, *342*, 1689–1703; (e) Sardinha, J.; Rauter, A. P.; Sollogoub, M. *Tetrahedron Lett.* **2008**, *49*, 5548–5550.
- (a) Moreno, B.; Quehen, C.; Rose-Hélène, M.; Leclerc, E.; Quirion, J.-C. Org. Lett.
 2007, 9, 2477–2480; (b) Poulain, F.; Serre, A.-L.; Lalot, J.; Leclerc, E.; Quirion, J.-C. J. Org. Chem. 2008, 73, 2435–2438; (c) Poulain, F.; Leclerc, E.; Quirion, J.-C. Tetrahedron Lett. 2009, 50, 1803–1805. and references cited therein.
- (a) Paquette, L. A.; Bailey, S. J. Org. Chem. **1995**, 60, 7849–7856; (b) Hansen, F. G.; Bundgaard, E.; Madsen, R. J. Org. Chem. **2005**, 70, 10139–10142; (c) Uenishi, J.; Ohmiya, H. Tetrahedron **2003**, 59, 7011–7022; (d) Moutel, S.; Shipman, M.; Martin, O. R.; Ikeda, K.; Asano, N. Tetrahedron: Asymmetry **2005**, 16, 487–491.
- For the addition to aromatic or poorly functionalized aliphatic aldehydes, see:

 (a) Qin, Y.-Y.; Qiu, X.-L.; Yang, Y.-Y.; Meng, W.-D.; Qing, F.-L. J. Org. Chem. 2005, 70, 9040–9043;
 (b) Prakash, G. K. S.; Hu, J.; Wang, Y.; Olah, G. J. Fluorine Chem. 2005, 126, 527–532;
 (c) Sugimoto, H.; Nakamura, S.; Shibata, Y.; Shibata, N.; Toru, T. Tetrahedron Lett. 2006, 47, 1337–1340;
 (d) Mizuta, S.; Shibata, N.; Ogawa, S.; Fujimoto, H.; Nakamura, S.; Toru, T. Chem. Commun. 2006, 2575–2577;
 (e) Pohmakotr, M.; Boonkitpattarakul, K.; leawsuwan, W.; Jarussophon, S.; Duangdee, N.; Tuchinda, P.; Reutrakul, V. Tetrahedron 2006, 62, 5973–5985;
 (f) Pohmakotr, M.; Panichakul, D.; Tuchinda, P.; Reutrakul, V. Tetrahedron 2007, 63, 9429–9436.
- For the cyclization of difluoromethyl radicals, see: (a) Cavicchio, G.; Marchetti, V.; Arnone, A.; Bravo, P.; Viani, F. *Tetrahedron* **1991**, 47, 9439–9448; (b) Morikawa, T.; Kodama, Y.; Uchida, J.; Takano, M.; Washio, Y.; Taguchi, T. *Tetrahedron* **1992**, 48, 8915–8926; (c) Buttle, L. A.; Motherwell, W. B. *Tetrahedron Lett.* **1994**, 35, 3995–3998; (d) Arnone, A.; Bravo, P.; Frigerio, M.; Viani, F.; Cavicchio, G.; Crucianelli, F.J. Org. Chem. **1994**, 59, 3459–3466; (e) Qin, Y.-Y.; Yang, Y.-Y.; Qiu, X.-L.; Qing, F.-L. Synthesis **2006**, 1475–1479; (f) Li, Y.; Hu, J. Angew. Chem., Int. Ed. **2007**, 46, 2489–2492.
- (a) Beckwith, A. L. J. Tetrahedron 1981, 37, 3073–3100; (b) Spellmeyer, D. C.; Houk, K. N. J. Org. Chem. 1987, 52, 959–974; (c) Bar, G.; Parsons, A. F. Chem. Soc. Rev. 2003, 32, 251–263.
- The addition of fluoroalkylsilane reagents to α-chiral aldehydes is often poorly diastereoselective except for α-dibenzylaminoaldehydes for which a Felkin selectivity is observed: (a) Andrés, J. M.; Pedrosa, R.; Pérez-Encabo, A. *Eur. J. Org. Chem.* 2004, 1558–1566; (b) Liu, J.; Ni, C.; Wang, F.; Hu, J. *Tetrahedron Lett.* 2008, 49, 1605–1608.
- 11. Lavaire, S.; Plantier-Royon, R.; Portella, C. Tetrahedron: Asymmetry 1998, 9, 213–226.